サンゴと放射性物質

Radionuclide in coral

はじめに

放射性物質と聞くと、以前はチェルノブイリ原発 事故、今はフランスの南太平洋の核実験を思い浮か べてしまいますが、放射性物質そのものは大きく分 けて、地球が誕生したときから存在しているウラン などの天然の放射性物質と、人類が原子力のエネル ギーを利用し始めてから作り出されたセシウムなど の人工の放射性物質の二種類があります。天然の放 射性物質は、地球上の大気から陸上、海洋にいたる 様々な環境中に普通に存在していますが、一方の人 工の放射性物質については、1960年代に米国や旧ソ 連などの核保有国が大気圏内で核実験を行ってから、 環境中で検出されるようになりました。また、英国 やロシアなどの原子力施設で事故があった際に、こ れらの人工放射性物質が周辺の環境汚染を引き起こ したのではないかと問題になったこともあります。 幸い、日本ではこれら人工放射性物質のレベルは低 く、地球上に何万年も前から存在している自然の放 射性物質のレベルに比べて極めて微量であることが 報告されています (佐伯 1984)。

これらの天然や人工の放射性物質は、時間の経過 とともにその放射性物質が出す放射線の量が一定の 割合で減少していく性質があり、また放射性物質そ のものが別の元素に変化していくことから、これら の物質を用いて環境や生態系の研究において、環境 中の様々な物質の動きや物質の量を明らかにする試 みが行われてきました。例えば、ウラン-238のよう な天然の放射性物質は、時間の経過とともにウラン -234、トリウム-230 を経て、ラジウム-226、ラドン -222、鉛-210、ポロニウム-210 と異なる元素に変化

ウラン - 238 ➡	ウラン-	234 ■	➡ トリウム - 230 ■	•
(半減期約44億年)	(半減期約25	万年)	(半減期8万年)	
ラジウム - 226)ラ ドン -	222	→ 鉛 - 210 →	
(半減期1600年)	(半減期約4	日)	(半減期約22年)	
ボロニウム - (半減期約1401	210 →	鉛	(安定)	

図 1. ウラン系列の放射性核種と半減期

していき、最後には放射性物質ではない普通の鉛に なります (図 1)。このような一連の放射性物質を系 列と呼びますが、ウランの系列の中で、ラジウムな どは河川水から供給されることから、沿岸における 河川水と海水の混合率などの研究に用いられ (Nozaki et al. 1989)、またラドンは他の気体と反 応しにくく半減期が短い性質を有することから、海 底土中に含まれる海水の動きの研究に (Martin and Banta 1992)、さらに鉛-210 やポロニウム-210 は細 かい粒子によく吸着される性質を用いて、海洋にお けるプランクトンの研究などによく用いられていま す (Fowler 1991)。一方、人口の放射性物質も最近 は環境中における物質の動きの研究に用いられるよ うになってきました。1960年代に米国や旧ソ連等に よって行われた大気圏内核実験の際に環境中に放出 されたストロンチウム-90 やセシウム-137 は、核実 験停止後徐々にそのレベルが低下し、現在地表に降 下してくる量はほぼ一定に近くなってきています (Hirose et al. 1987)。これらのセシウムやストロ ンチウムなどの人工放射性物質が水に溶けやすいこ とや、地表への降下量の記録が残っていることを利 用して、海洋における海水の交換速度の推定 (Dahlgaard et al. 1991) や、海底土の堆積速度の

Y. Tateda

簯

う田

(財) 電力中央研究所

推定等 (Frignani and Langone 1991) に用いられて います。

サンゴやサンゴ礁における研究でも、これらの天 然あるいは人工の放射性物質を用いた研究が行われ てきました。半減期(放射線を出す量が半分になる のに要する時間)が約22年である鉛-210を用いて、 深海のサンゴが成長する速度を測定した結果では、 太平洋の水深 600m に生息する深海サンゴ (Corallium niobe) では年間およそ 0.11 ミリしか成 長せず、その寿命がおよそ 180 年であることが明ら かになっています (Druffel et al. 1990)。また、 人工放射性物質のストロンチウム-90 を用いたフロ リダ沖のサンゴの研究では、海水中のストロンチウ ム-90 濃度の変化に応じてサンゴの中のストロンチ ウム-90 濃度が変化することが記録され、このことか ら、サンゴ中のストロンチウムの変化がフロリダ沖 の海流の変化を反映していたことが示されています (Purdy et al. 1989)。

このように、天然放射性核種と人工放射性核種は、 サンゴやサンゴ礁における環境の変化や生物的な情 報を得るのに有効なことから、阿嘉島臨海研究所の 協力により、いくつかの放射性核種を用いて阿嘉島 のサンゴとサンゴ礁に関する生態学的な検討を行っ てきましたので、ここで紹介したいと思います。

鉛-210 を用いた

阿嘉島のウスチャキクメイシの成長速度の推定

鉛-210 は天然に普通に存在する放射性核種であり、 図 1 に示したように、同じく天然の放射性核種であ るラジウム-226 からラドン-222 を経て生成します。 サンゴ礁付近では、大気中のラドン-222 から生成し た鉛-210 は雨や大気中の細かい粒子とともに海の表 面に降下し、海水中に入ります。一方、海水中にも もともとラジウム-226 が存在し、これからラドン -222 を経て鉛-210 が生成します。また、極めて希で はありますが、陸上から雨や川の水とともに海水中 に流れ込む鉛-210 もあります。このような形で海水

図 2. サンゴ礁における鉛-210

中に流れ込んだり海水中で生成した鉛-210は、海水 中に生息するプランクトンやサンゴなどの生物によ って吸収されたり、海水中に浮遊する微粒子ととも に海底に堆積したりします (図 2)。サンゴのように 年々成長する炭酸カルシウムの骨格を持つような生 物では、この鉛-210が海水中のカルシウムや微粒子 とともにサンゴに取り込まれて骨格に吸収され、時 間の経過とともにその濃度が減少していきます。こ の現象を利用して、ウスチャキクメイシ (Favia pallida)の年齢を推定してみました。図3は阿嘉島 のニシハマの海底に生息するウスチャキクメイシの 骨格における鉛-210 濃度のサンゴの外側から内側へ の変化を調べた結果ですが、サンゴの骨格が作られ た年が古くなるほど (サンゴの内側になるほど)、そ の濃度が減ってゆく様子が分かります。鉛-210の濃 度が半分に減少する速度は約22年ですので、サンゴ の外側からの距離と鉛-210の濃度の減少の程度から

ウスチャキクメイシ

計算して、このサンゴの年齢はおよそ12年で、その 成長する速度は年間約0.65cmであると推定されまし た。ウスチャキクメイシのように、骨格が外側に成 長し古い骨格が内側に残っていくようなサンゴでは、 このように鉛-210を用いた成長速度の推定が有効で あることが分かります。

鉛-210による陸上からの土砂の流れ込みの推定

海水中の鉛-210の起源は、1)大気から降下したも のと 2) 海水中のラジウム-226 から生成したもの、 および 3)陸上から雨水や土壌粒子とともに海に 流れ込むものの3つに分かれます。沖縄海域付近の 海水中の鉛-210は、この海域が中国大陸から離れて おり、また外洋水である黒潮によって大陸の沿岸水 とは隔てられていることから、大陸から流れ込む淡 水に起源をもつラジウム-226の濃度が低く、2)の起 源よりは 1)の大気中から降下したものが主な起源 とされています (Nozaki et al. 1991)。また、大陸 の沿岸水に較べて海水中にある粒子が少ないことか ら、これらの粒子の沈降によって海水から除かれる 鉛-210の割合が大陸沿岸より小さいために、海水中 の鉛-210 濃度は大陸の沿岸水のそれより高いという 特徴があります (Nozaki et al. 1991)。一方、一般 に大陸に降下した鉛-210は、陸上環境中でほとんど 吸着されてしまい、3)の陸から海に運ばれる鉛-210 の量はほとんど無視し得るとされています (Robbis 1978)。しかしながら、阿嘉島のように周囲 12km の 小さな島では、島に降下した鉛-210 は陸上環境で除

かれる前に、一部は雨や土壌粒子とともに付近の海 水に運ばれる可能性もあると考えられます。そこで、 阿嘉島周辺の海域のいくつかの地点で、サンゴや海 底土の鉛-210の濃度を測定して、鉛-210濃度が高い 地点がないか検討してみました(表1)。表1に示さ れるように、阿嘉島周辺の4地点に生息するサンゴ のうち、クロジャキのハナガサミドリイシ (Acropora nasuta) やウスチャキクメイシの鉛-210 濃度が、他の3地点に生息するサンゴのそれより高 いことがわかります。しかし、海底土の鉛-210 濃度 はニシハマの海底砂で低く、また陸上の砂の鉛-210 濃度には大きな差は認められませんでした。このよ うな結果が得られた理由は今のところ不明ですが、 可能性としては 1) 阿嘉島周辺の潮流の影響、2) ク ロジャキ地点付近のダムの影響、3) 生息場所の違い によるサンゴの生理生態の差の影響、4)海底土に対 する潮流や陸上からの物質の流れ込みの影響、等が 推定されます。海水中の鉛-210 濃度はその海域にお いてほぼ安定であり (Nozaki et al. 1991)、鉛-210 濃度の局地的な差を生じ得るのは、陸上土や海底土 中の粘土粒子中の鉛-210 濃度の差によるものしか仮 定しにくい (Robbins 1978) ことから、サンゴ礁環

表 1. 阿嘉島周辺のサンゴ礁における鉛-210 濃度

試料採取地点	鉛	2101	農度 (単	位*1)
海水(0.45 μm 濾i	過海水)			
ニシハマ	4.60	±	1.84	
ヤカラハマ	6.53	±	1.20	(mBq/l海水)
ウスチャキクメイ	シ(組織。	と骨格	を含むサ	- ンゴ表面 5 mm の部分)
ニシハマ	95.9	\pm	13.8	
クロジャキ	141	±	61.8	
クシバル	77.5	±	13.3	
ヤカラハマ	75.1	±	14.7	(mBq/q乾重)
ハナガサミドリイ	シ(組織と	と骨格	を含むサ	レンゴ表面 5 mm の部分)
ニシハマ	89.7	±	18.4	
クロジャキ	107	±	20.6	
クシバル	88.0	<u>+</u>	17.7	
ヤカラハマ	85.5	+	14.5	(mBa/a乾重)
海底砂(表層5 cm)			(
ニシハマ	73.7	±	5.7	
クロジャキ	254	+	29	
クシバル	274	+	15.7	(mBa/a 乾重)
陸上砂(表層5 cm)			(***= 43 :==)
ニシハマ	164	+	8.2	
クロジャキ	166	+	7.3	
クシバル	142	±	7.5	(mBq/g乾重)

* 1

Bq:放射能の単位、1 Bq/gは試料1gにおいて放射性壊変(元の原子が壊れて別の原子に変わる際に放射線を出す)が1回起こることを示している。

表 2. サンゴ骨格 (ニシハマ地点) における ストロンチウム-90 レベル

ストロンチウム-90 レベル 90Sr/88Sr (x 10**)(90Srの88Srに対する原子数の比)
(表面からの距離)
5.8
5.1
(最外側の枝の先端からの距離)
6.9
5.7
年) 5.5

境試料におけるこのような鉛-210 濃度の差は、陸上 から流れ込む雨水や土壌粒子の影響ではないかと推 定されます。しかしながら、詳細についてはさらに 陸上や海水中環境試料について鉛-210 濃度や親核種 であるラジウム-226 等の分析を行うなど、さらに検 討が必要と考えられます。

サンゴ中のストロンチウム-90の記録

サンゴという生物の特徴として、炭酸カルシウム の骨格を作り、これが年々成長していくということ があげられます。この性質を利用して、サンゴが生 息している海域のこれまでの環境の変化を調べると いうことが行われてきました。ストロンチウム-90 は人工の放射性物質で、過去の米ソ等が行った大気 圏内核実験の名残として地球上に残っている放射性 物質です。また、ストロンチウムそのものは、環境 中や生物中でカルシウムとほぼ同じような動きをす る事が知られており、環境や生態系内でのカルシウ ムの動きを推定する追跡物質(トレーサー)として 使われてきました (Weber 1973)。そこで阿嘉島のサ ンゴの骨格におけるストロンチウム-90の濃度変化 を検討してみました。その結果、ニシハマに生息す るサンゴの骨格の一番外側におけるストロンチウム -90 レベルと海水中のストロンチウム-90 レベルがほ ぼ等しいことから (表 2)、サンゴは海水中のストロ ンチウム-90 レベルに応じて、その骨格中にストロン チウム-90を取り込んでいることがわかりました。ま た、ウスチャキクメイシの骨格中のストロンチウム -90 レベルの変化は、これまでに報告されている沖縄

に降下したストロンチウム-90 のレベルの変化とほ ぼ一致していました (図 4)。

沖縄周辺海域(那覇、金武湾、中城湾)の海水中 のストロンチウム-90 濃度は近年ほぼ一定であり (NIRS 1994)、一般に同緯度帯の海水中のストロンチ ウム-90 濃度は大きくことなることは無いことから (佐伯 1984)、沖縄周辺海域の海流や潮流の変化によ る海水中ストロンチウム-90 濃度の変化は無かった ものと推定されます。また、単位面積あたりの海水 表面に大気中から直接降下するストロンチウム-90 量は、海水柱 (水深 50m、(Nozaki et al. 1991)) 中 のストロンチウム-90 降下量の総量に比べて極めて 小さく、海水中ストロンチウム-90濃度を局地的に変 化させる可能性も考えられません。残る可能性とし て、サンゴ礁を有する島に陸上降下したストロンチ ウム-90 が雨水とともにサンゴ礁に流れ込んで、海水 柱の単位面積当たりのストロンチウム-90 濃度を一 時的に上昇させることが考えられます。このストロ

ンチウム-90 濃度の変動が、継続的に海水中のカルシ ウムを使って骨格を作り続けているサンゴに記録さ れていると推定するのが今のところ妥当であると考 えられます。特にストロンチウム-90は環境中では水 に溶けやすいイオン形態で存在することから、土壌 などが流出しない程度の降雨でも、阿嘉島のような 小さな島では容易にサンゴ礁に運ばれるものと考え られます。残念ながら陸上から流れ込んだストロン チウム-90を、海水中にもとからあったストロンチウ ム-90 と区別することは現在のところ不可能なこと から、サンゴ骨格に残る記録を用いて、一体どの程 度のストロンチウム-90 が陸上から流れ込んだのか を正確に推定することは出来ません。しかし、阿嘉 島のような小さな島では、サンゴ礁への陸水の流れ 込み影響の有無を調べるのに使える可能性のあるこ とが示唆されました。

おわりに

放射性物質は一般的に危険なものというイメージ がありますが、これまで述べてきたように、地球の 誕生から存在してきた天然の放射性物質や歴史的な 結果から環境中に存在する微量の人工放射性物質は、 サンゴやサンゴ礁における研究に役立つ情報を提供 してくれることがわかります。特に今回の阿嘉島の サンゴやサンゴ礁に関する検討結果から、サンゴ中 の鉛-210 やストロンチウム-90 の分析により、陸上 から流れ込む雨水や土壌粒子の影響の有無を推定で きる可能性が示唆されました。これは、これらの放 射性物質の定量により、サンゴそのものに影響が認 められないような微量の陸上からの雨水や土壌粒子 の流れ込みの記録の推定が出来るかも知れないこと を示しています。近年沖縄本島などでは、陸上から の赤土の流出が問題とされており、ここに述べたよ うな天然放射性物質や微量の人工放射性物質を用い て、その影響や放出源の特定に役立てることが出来 るかどうか、その可能性を評価することも有益と考 えられます。

今後の課題としては、このような放射性物質によ るサンゴ礁の環境影響の推定法の有効性について、 さらにデータを取得しての検討や、陸上からの物質 の流れ込みを海水中に存在した物質と区別する方法 の開発が必要になると考えられます。

引用文献

- Dahlgaard H. *et al.* 1991. Radioactive tracers in the Greenland sea. In "Radionuclides in the study of marine processes. Eds by P. J. Kershaw and D. S. Woodhead. Elsevier Applied Science. London. 12-22.
- Druffel E. R. M. *et al.* 1990. Growth rate of a deep-sea coral using 210Pb and other isotopes. Geochimi. Cosmochimi. Acta. 54. 1493-1500.
- Fowler S. W. 1991. Biologically mediated removal, transformation, and regeneration of dissolved elements and compounds. In "Ocean margin processes in global change." Eds by R. F. C. Mantoura *et al.* John Wiley & Sons. 127-143.
- Frignani M. and L. Langone. 1991. Accumulation rates and 137Cs distribution in sediments off the Po River delta and the Emilia-Romagna coast (northwestern Adriatic Sea, Italy). Continent. Shelf Res. 11. 525-542.
- Hirose K. *et al.* 1987. Annual Deposition of Sr-90, Cs-137 and Pu-239, 240 from the 1961-1980 Nuclear Explosions: A Simple model. J. meteorol. Soc. Japan. 65. 259-277.
- Martin W. R. and G. T. Banta. 1992. The measurement of sediment irrigation rates: A comparison of the Br-tracer and 222Rn/226Ra disequilibrium techniques. J. Mar. Res. 50. 125-154.
- NIRS 1994. Radioactivity survey data in Japan. 104. pp31.
- Nozaki Y. *et al.* 1989. Mean residence time of the shelf water in the east China and the Yellow Seas determined by 228Ra/226Ra measurements. Geophy. Res. Let. 16. 1297-1300.
- Nozaki Y. *et al.* 1991. Residence times of surface water and particle-reactive 210Pb and 210Po in the East China and Yellow seas. Geochimi. Cosmochimi. Acta. 55. 1265-1272.
- Purdy C. B. *et al.* 1989. Anomalous levels of 90Sr and 239, 240Pu in Florida corals: Evidence of coastal processes. Geochimi. Cosmochimi. Acta. 53. 1401-1410.
- Robbins J. A. 1978. Gochemical and geophysical applications of radioactive lead. In "The biogeochemistry of lead in the environment." ed. Nriagu J. O. Elsevier/North-Holland Biomedical Press. Amsterdam. 285-393.
- 佐伯誠道 編. 1984. 環境放射能 挙動・生物濃縮・人体 被曝線量評価 - . ソフトサイエンス社. 東京. pp.546
- Weber J. N. 1973. Incorporation of strontium into reef coral skeletal carbonate. Geochimi. Cosmochimi. Acta. 37. 2173-2190.